Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283684

RESUMO

Natural products play a significant role in new drug discovery and anticancer therapy, making the evaluation of their anticancer efficiency crucial for clinical application. However, delivering natural products to single cells and in situ monitoring of induced signaling molecule fluctuation to evaluate anticancer efficiency remain significant challenges. Hence, we proposed a universal and straightforward strategy to construct a bifunctional nanoelectrode that integrates drug loading and monitoring of signal molecule fluctuations at the single-cell level. Platinum (Pt) nanoparticles/reduced graphene oxide (rGO) composites were first electrochemically deposited on the carbon fiber nanoelectrode (CFNE@Pt/rGO) to serve as electrocatalytic materials for the monitoring of natural-product-induced reactive oxygen species (ROS) generation. The GO/natural product complex, formed by π-π stacking and hydrophobic interactions, was further electrochemically reduced on the surface of CFNE@Pt/rGO to enable the CFNE drug-loading function. Using this bifunctional functional nanoelectrode, a series of natural products (such as capsaicin, curcumin, and chrysin) were delivered into single cancer cells, and their anticancer efficiency was evaluated by measuring ROS generation. The results showed that intracellular ROS production induced by chrysin was 1.5-fold greater than that of curcumin and 2.1-fold greater than that of capsaicin. This work proposes an effective tool to evaluate the anticancer efficiency of various natural products. Additionally, this nanotool can be expanded to monitor the fluctuation of other biomolecules (such as RNS, GSH, NADH, etc.) by replacing Pt nanoparticles with other electrocatalytic materials, which is significant for comprehensively exploring the anticancer efficiency of new drugs and for the clinical treatment of various diseases.

2.
Anal Chem ; 96(14): 5719-5726, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38544485

RESUMO

Neuropathic pain is a chronic and severe syndrome for which effective therapy is insufficient and the release of ATP from microglia induced by sphingosine-1-phosphate (S1P) plays a vital role in neuropathic pain. Therefore, there is an urgent demand to develop highly sensitive and selective ATP biosensors for quantitative monitoring of low-concentration ATP in the complex nervous system, which helps in understanding the mechanism involved in neuropathic pain. Herein, we developed an electrochemical microsensor based on an entropy-driven bipedal DNA walker. First, the microsensor specifically recognized ATP via ATP aptamers, initiating the entropy-driven bipedal DNA walker. Subsequently, the bipedal DNA walker autonomously traversed the microelectrode interface, introducing methylene blue to the electrode surface and achieving cascade signal amplification. This microsensor showed excellent selectivity, stability, and a low limit of detection at 1.13 nM. The S1P-induced ATP release from BV2 cells was successfully monitored, and it was observed that dicumarol could inhibit this release, suggesting dicumarol as a potential treatment for neuropathic pain. The microsensor's small size exhibited significant potential for monitoring ATP level changes in neuropathic pain in vivo, which provides a new strategy for in situ and quantitative monitoring of nonelectroactive biomolecules associated with neurological diseases.


Assuntos
Técnicas Biossensoriais , Lisofosfolipídeos , Neuralgia , Esfingosina/análogos & derivados , Humanos , Entropia , Dicumarol , DNA/química , Microeletrodos , Trifosfato de Adenosina , Técnicas Eletroquímicas , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA